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The expectation that scientific productivity follows regular patterns over a career underpins many
scholarly evaluations, including hiring, promotion and tenure, awards, and grant funding. However,
recent studies of individual productivity patterns reveal a puzzle: on the one hand, the average
number of papers published per year robustly follows the “canonical trajectory” of a rapid rise to
an early peak followed by a gradual decline, but on the other hand, only about 20% of individual
productivity trajectories follow this pattern. We resolve this puzzle by modeling scientific produc-
tivity as a parameterized random walk, showing that the canonical pattern can be explained as
a decrease in the variance in changes to productivity in the early-to-mid career. By empirically
characterizing the variable structure of 2,085 productivity trajectories of computer science faculty
at 205 PhD-granting institutions, spanning 29,119 publications over 1980-2016, we (i) discover re-
markably simple patterns in both early-career and year-to-year changes to productivity, and (ii)
show that a random walk model of productivity both reproduces the canonical trajectory in the av-
erage productivity and captures much of the diversity of individual-level trajectories. These results
highlight the fundamental role of a panoply of contingent factors in shaping individual scientific
productivity, opening up new avenues for characterizing how systemic incentives and opportunities

3 and Aaron Clause

t4: 53, 1

can be directed for aggregate effect.

I. INTRODUCTION

Scientific productivity, which is typically measured by
the number of papers that a scholar publishes, underpins
many evaluative processes over the course of an academic
career, including hiring decisions, tenure and promotions,
grant funding, and scientific prizes [1, 2]. Due to its broad
importance, scientific productivity has been studied from
a variety of angles, such as productivity over time, aver-
aging over scholars [3-5]; productivity over scholars, av-
eraging over time [6, 7]; and extremal statistics of the
most productive or impactful papers or years within ca-
reers [8, 9]. While useful, these approaches leave unan-
swered key questions about scientific careers that depend
on knowledge about the full distribution of scholarship.

For example, a substantial literature, spanning many
decades and fields, documents a “canonical trajectory” in
scientific productivity over a career. The canonical tra-
jectory is when a researcher’s productivity tends to rise
rapidly to a peak in the early career followed by a grad-
ual decline, a pattern which is robustly captured when
many scientists’ trajectories are averaged [3, 5, 10-12].
However, recent work has revealed that this canonical
trajectory is not representative of most individual scien-
tists, who instead exhibit a rich diversity of productivity
trajectories [13], even as their average productivity reli-
ably follows the canonical trajectory.

The discovery that the canonical trajectory is a mis-
leading description of individual productivity patterns
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presents a puzzle: what mechanisms lead to both dra-
matic variability in individual productivity trajectories
and simultaneously the canonical pattern in aggregate?
Past explanations of a canonical pattern at the individual
level have invoked ideas ranging from cognitive mech-
anisms [14] to psychological development [15] and eco-
nomic mechanisms [11, 16]. Other explanations focus
on the scientific reward mechanisms, in which scholars
tend to become more stratified over the course of a ca-
reer [12, 17, 18]. However, these ideas ignore the broad
heterogeneities across scientists and institutions, and do
not readily explain the empirical diversity of faculty pro-
ductivity patterns [13]. As a result, little is known about
mechanisms that generate realistic individual productiv-
ity trajectories.

Here, we propose and investigate a parsimonious expla-
nation which links several simple observations by mod-
eling scientific productivity as a discrete-time Markov
chain, which we refer to as a random walk. First, indi-
vidual faculty productivity fluctuates from year to year
due to individually contingent factors and events, includ-
ing the beginning of a new collaboration [19, 20], an
experiment that fails [21], parenthood [22], or changing
institutions [23, 24]. While individually unpredictable,
these fluctuations combine to form recognizable statis-
tical patterns in the aggregate. Second, these factors
change over a career, such that the variability of fluctu-
ations also changes across different career stages, with
higher productivity fluctuations in the early career than
in the later career. In fact, we will show that a random
walk with a change in variance is sufficient to produce
both the canonical trajectory and much of the observed
variability around it. This change in variance explana-
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tion builds on past work that highlights the relationship
between institutional forces and systemic incentives on
the one hand and global patterns of productivity on the
other [12, 18], and on work that emphasizes the central
role of randomness and luck in scientific careers [25], e.g.,
the unpredictability of when faculty tend to publish their
most highly cited papers [8, 9].

We formalize this explanation as a probabilistic gener-
ative model that can simulate the evolution of individual
faculty productivities, which we validate against empiri-
cal data on the productivities of 2,085 computer scientists
at PhD-granting universities in the US and Canada. We
produce two models—a simplified model, and a full one.
The simplified model shows that a change of variance in
faculty careers is sufficient to produce the canonical tra-
jectory while preserving individual variability. It crystal-
lizes a set of sufficient conditions for producing canonical
patterns, and allows us to explore the space of possible
average trajectories. The full model shows that modeling
productivity as a random walk captures many of the de-
tails of both individual productivities, and aggregate pat-
terns like the canonical trajectory, while simultaneously
revealing noteworthy certain non-Markovian patterns in
real faculty productivity.

The full model fits two sets of parameters: the change
points between career stages, which parameterizes the
change of structural influences across a scientific career,
and the parameters describing the distribution of produc-
tivity fluctuations within each career stage, which param-
eterizes the role of contingency and luck. Together, these
assumptions model an individual researcher’s productiv-
ity over time as a truncated random walk that cannot
become negative, where individual step sizes are drawn
from a distribution whose parameters depend on the in-
dividual’s career stage.

We first show that the simplified model is sufficient
for generating a diverse range of trajectories that repro-
duce the canonical trajectory in aggregate. We then fit
the full model to the empirical data on computer scien-
tists and obtain estimates of the model’s change points,
which represent the timings of major career transitions
for faculty researchers, and the parameters for the ran-
dom walk within each career stage. We directly validate
the timing of the inferred career change points by com-
paring them to the typical timing of faculty promotions
for this population of researchers. We then check the
fitted model by generating an ensemble of simulated pro-
ductivity trajectories, which we contrast with the empir-
ical trajectories across a variety of statistical measures.
The full model successfully explains a substantial por-
tion of the variability of individual careers as well as the
canonical trajectory pattern, while also revealing impor-
tant discrepancies between the model and the data that
indicate higher-order mechanisms and other contingent
forces that shape scientific productivity.

II. DATA

We combine two comprehensive datasets to perform
our analysis. First, we use a hand-curated census
of all tenured or tenure-track faculty employed at all
205 US and Canadian computer science departments
documented in the Computing Research Association
(CRA)’s Forsythe List of PhD-granting departments in
computing-related disciplines [26] in the academic year
2011-2012. This dataset includes 5,032 faculty, whose
PhD-granting institutions and employment histories were
manually gathered from public materials such as CVs and
academic websites.

Second, we use the November 2016 snapshot of the
Digital Bibliography and Library Project (DBLP, [27]),
a large-scale bibliographic dataset for journals and con-
ference proceedings relevant to computing research, al-
though with limited coverage of interdisciplinary com-
puting. The employment data is joined with the DBLP
both algorithmically and manually, excluding preprints
on the arXiv. By using publication data linked to defini-
tive employment records, rather than inferring the start
of careers from publications, as is common in the bib-
liometrics literature [28-30], we are able to isolate and
analyze the dynamics of scholarly productivity under a
relatively consistent and stable set of influences and in-
centives around productivity.

To account for DBLP’s degraded coverage of publica-
tion records further back in time and non-stationarity in
average productivities over time, we use the linear scal-
ing developed by Way et al. [13] that adjusts the average
productivity in DBLP to match the average productiv-
ity estimated from a random sample of CVs from the
same population of researchers. This adjustment allows
us to include researchers from different career stages into
a single analysis, and to compare faculty at a similar ca-
reer stage across cohorts. This adjustment results in a
real-valued non-negative number for each faculty in each
year t that we will denote as the adjusted productivity
g:- We denote the change in adjusted productivities as

0 = qt+1 — qt-

We focus our analysis on the most productive years of a
career, and where the population pattern of the canonical
trajectory is strongest, by analyzing years 0-20 of the
careers for all faculty who received their PhD on or after
1980. We refer to the number of years since the start of
a professor’s first assistant professorship as their career
age, with their first year as career age 0.

To be included in our analysis, we require that faculty
publish three or more papers indexed by DBLP before
career age 5. These inclusion criteria result in a dataset
of 2,085 faculty across 204 departments, and 128,816
author-publication pairs. For a subset of our analyses,
we select faculty whose careers span the full 21 years,
which yields 510 careers. We designate these careers the
full trajectories.
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FIG. 1. Empirical productivity data. (A) An exponential distribution (dashed black line) accurately fits the empirical
first-year productivity (pink histogram). The inset displays the estimated rate parameter against the density of estimated rates
in 1,000 bootstrap replicas. (B-D) The empirical distributions of productivity changes (pink histograms) are semi-log plots,
for ranges of career age, along with fitted Laplace distributions (dashed black line). (E) The average productivity for the same
set of researchers, showing the “canonical trajectory” of a rapid rise followed by a gradual decline or leveling off, depicted as
means of time-adjusted productivity for each career age and 95% bootstrap confidence intervals. Brackets indicate the range of
career ages that were grouped together for the density plots: (A) productivity in year zero, and then changes of productivity

in (B) years 1-4, (C) years 5-7, and (D) years 8-20.

III. RESULTS

A. Distribution of productivity changes

To study faculty careers from a perspective beyond av-
erage or extreme values, we characterize the stochasticity
and variation within and across individuals by examining
how productivity varies at the start of a career, and how
it evolves empirically over time. We examine the distri-
bution of first-year productivity ¢g, and the distributions
of changes in productivity d; = q¢+1 —qs, and find surpris-
ing statistical regularity in both distributions: first-year
productivity closely follows an exponential distribution
(Fig. 1A), and the productivity changes follow a Laplace
distribution regardless of career stage (Fig. 1B-D). The
simple form of these empirical distributions is provoca-
tive, and suggests that the variability of initial produc-
tivity ¢o and subsequent changes to productivity §; may
reflect relatively simple underlying stochastic processes.

Fitting exponential and Laplace distributions to the

data, we notice that the estimated variances decrease
from @ = 3.88 (95% CIL [3.78, 3.97]; all ClIs are
individual-level block bootstraps with 10,000 bootstrap
replicas) to & = 3.64 (95% CI: [3.54, 3.77]) and & = 3.32
(95% CI: [3.19, 3.39]) over the course of a career (Fig. 1).
On the other hand, the location parameters exhibit much
more inferential uncertainty as well as the lack of any
clear pattern, where between career years 1-4 and 5-
7, the mode increases from g = —0.37 (95% CI: [-0.48,
0.35]) to i = —0.21 (95% CI: [-1.77, 0.32]), despite a
change in the average trajectory from increasing to de-
creasing. This pattern suggests that the variance, rather
than the location, of these distributions, plays the key
role in shaping the appearance of the canonical trajec-
tory. The fact that across all career stages ji < 0 is
intriguing, as it suggests a downward pressure on produc-
tivity over time, i.e., the mode of next year’s productivity
will be slightly lower than this year’s.
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FIG. 2. Reproducing canonical trajectories with a simplified model. (A) Simulating N = 400 trajectories for each pair of ay
and ag with p = —1 fixed, we display the fraction of those trajectories that are canonical. Some regions of the parameter space
generate non-canonical trajectories (B, D, E), while others generate more canonical trajectories on average (C, F). Shaded
intervals denote pointwise 95% confidence intervals for N = 1000 simulations at those parameters.

B. Modeling the canonical trajectory

Given the statistical regularity of the go and d; distri-
butions, we test whether changes in variance could drive
the shape of the canonical trajectory by building a simple
model. To do so, we build on the literature suggesting
simple two-stage careers—that faculty productivity expe-
riences a qualitative transformation around tenure, with
rapid rise before and gradual decline after—to construct
a simplified model with separate variance parameters for
either stage [3, 5, 10-12].

Our simplified random walk model of the productivity
of a faculty career is a discrete-time Markov chain with
two free parameters: the variance in the early career ag
(before year 5), and the variance in the later career as
(after year 5). Following our empirical observation that
the mode is typically negative, we fix the mode of the
distribution at 4 = —1. By simulating career trajectories
at each pair of possible variances (a1, @2), we examine
whether there exist necessary criteria on the variances of
faculty productivity for producing canonical trajectories
at the individual level.

Across the parameter space, we find that high variance
in the early career paired with low variance in the later

career ag < aj, reliably produces a canonical trajectory
at the individual level (Fig. 2C,F), while other choices of
variances typically do not (Fig. 2B,D,E). In contrast, low
variance in the early career followed by a higher variance
later a3 < as tends to produce an aggregate trajectory
with a “bounce”, in which the average productivity falls
to an early nadir, and then gradually rises over time.
When the variances are equal or nearly so, the average
productivity instead tends to rise to a level that is pro-
portional to the variance’s magnitude. Finally, regardless
of the parameterization, most individual trajectories do
not follow the corresponding aggregate trajectory, and in-
stead individual trajectories exhibit the broad diversity
of shapes observed in empirical data [13].

The appearance of the canonical trajectory when
a1 > ag occurs for a straightforward mathematical rea-
son: because the random walk tends to drift toward zero
(u = —1), but productivity cannot be negative (g; > 0),
the Markov chain’s expected value will tend to relax onto
a value that is roughly proportional to the variance. (We
derive this behavior analytically in the Supporting In-
formation.) The canonical pattern appears because ini-
tial productivity qq is close to zero, causing the average
productivity to rise initially. But, because a; > ap, the



Markov chain overshoots the expected productivity of the
later career period, and at the beginning of that period,
when the variance shifts to its lower value, the expected
productivity then gradually falls. Hence, the canonical
pattern can be explained as a natural consequence of a
reduction in the variance of annual productivity over a
career.

C. DModeling empirical productivity trajectories

While the simple model confirms that a change in vari-
ance is sufficient to produce a canonical trajectory in a
two-stage career, real productivity trajectories may ex-
hibit more than two stages. We therefore introduce a
full model that decides on the number of career stages
from the data, as well as the years spanned by each
stage. To prevent overfitting to the data by adding overly
many career stages, we regularize this model by fitting a
productivity-dependent mode that allows greater shrink-
age from high productivity values (see Supporting Infor-
mation).

In this model, initial productivit/}\r is drawn from an
exponential distribution with rate \g, and we estimate
the number and location of breakpoints between career
stages. In each career stage i, we further fit both scale &;
and location slope §; for the Laplace distribution govern-
ing the change in productivity, such that the conditional
probability of observing a change in productivity § fol-
lowing a year with productivity x is given by:

f(2,0) =1{0 > —a}(2 — e P/ @)1 (1 f; ) e 10 Pil/ s

These parameters can be accurately and efficiently es-
timated from data, and we confirm this fact by recovering
known parameters, including various career breakpoints,
from simulated data (see Supporting Information).

Fitted parameters. Despite the full model’s in-
creased complexity relative to the simplified model, its
estimated parameters remain fully interpretable. The es-
timated career stages denote regimes with similar pro-
ductivity dynamics, meaning a relatively stable set of
factors, both systematic and contingent, that influence a
scientist’s productivity.

After fitting the full model to the set of 2,085 pro-
ductivity time series in our data, we perform an initial
check of the model’s fit by examining the estimated pa-
rameters. The maximum likelihood fit yields four career
stages: years 0—4, 5-7, 8-13, and 14-20 (Fig. 3A). These
inferred career stages align well with common transitions
that correspond to promotions in faculty careers, such as
tenure evaluation which typically occurs in career years
5-7, and promotion to full professor, which often occurs
about 12-15 years into a faculty career [31]. We note that
the inferred change points varied across bootstrap repli-
cas, with no set of maximum likelihood change points
occurring in over 13% of replicates. The change points

our procedure infers from the empirical data (4, 7, and
13) were the third most common set of change points in
the bootstraps, occurring in 6.3% of replicas, behind (2,
4,10) (12.9%) and (4, 5, 10) (6.4%) (Fig. 3A). Fitting the
model to each of 1000 block bootstrapped resamples us-
ing individual faculty as the unit of resampling provides
uncertainty estimates for all of the model’s parameters.
The relative instability of the inferred change point at
year 13 is largely due to the fact that longer careers are
less common in the data (full trajectories comprise only
510 (24.4%) of total trajectories, see Supporting Infor-
mation); and only in the resamples with more of the full
trajectories would the later career ages be detected as a
change point. As a robustness check, we also fitted the
full model to only the full trajectories, and find that the
change point sets (4, 7, 11) and (4, 7, 13) are much more
common across bootstrap replicas (23% in total).

Within the maximum likelihood career stages esti-
mated from the full model (4, 7, 13), the estimated
variances in the pre-tenure early career a7 = 4.5 (95%
CIL: [4.3,4.6]), az = 4.3 (95% CI: [4.1,4.4]) were higher
than the variances in the later career a3z = 3.8 (95% CL:
3.7,3.9]), @z = 3.5 (95% CI: [3.4,3.7]). Meanwhile, the
estimated (; parameter, which determines the mode of
the career-stage Laplace distribution in conjunction with
the productivity, fluctuated in an uncorrelated way with
the average productivity, as did the mode p; when we fit
it directly as a robustness check. This finding confirms
the insights from the simplified model: the fitted full
model produces the canonical trajectory through changes
in variance, rather than changes in the typical produc-
tivity. Hence, counter-intuitively, the distribution of the
number of papers that a researcher is likely to produce
in the next year (given their current year’s productivity)
does not need to shift across a career in order to produce
the aggregate pattern observed in the canonical trajec-
tory. Rather, the canonical pattern can emerge merely
from mid-career reductions in the variance in annual pro-
ductivity.

Canonical trajectory. If the fitted full model in-
cludes the most salient aspects of individual productivity
dynamics, then we expect simulations from the model to
be statistically similar to the empirical trajectories.

First, we examine whether the model simulations dis-
play a canonical trajectory in aggregate. Indeed, our
simulated trajectories evolve similarly to empirical pro-
ductivity trajectories on average, successfully recovering
the rapid rise and gradual decline (Fig. 3A). In fact, the
average productivity is closely aligned between simulated
and empirical trajectories, such that the largest aver-
age within-year difference between the two is less than
one unit of productivity across an entire faculty career.
This level of agreement is particularly notable because
the model was fitted to individual level data, and yet it
produces synthetic time series that yield the same aggre-
gate pattern as the empirical data.

Career year of greatest productivity. The year
of greatest productivity is not directly parameterized by
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the random walk model. To evaluate the model’s ac-
curacy on this pattern of productivity, when fitted to
the full trajectories only, we examine the distribution
of the year in which a trajectory reaches its maximum
productivity for the full trajectories and for 10,000 tra-
jectories simulated from the fitted model. We find that
these two distributions (Fig. 3B) are statistically indis-
tinguishable (K'S = 0.03,p = 0.75), indicating that the
model naturally explains this pattern in the data.

Variance within and across careers. Focusing on
the full trajectories and computing the variance and stan-
dard deviations of productivity within each empirical and
simulated trajectory, we find that the empirical trajecto-
ries tend to exhibit slightly lower variance than simu-
lated trajectories (K.S = 0.21,p < 0.001, Fig. 4A). The
prevalence of years with zero publications in empirical
trajectories, however, is not sufficient to explain this dif-
ference (Fig. 4A).

Empirically, faculty produce more cumulative papers
by career year 5 than do simulated trajectories (¢
9.16,p < 0.001, Fig. 4C). This discrepancy is driven by a
longer tail of cumulatively productive individuals in the
empirical data who are not reproduced by the model:
since researchers’ productivity is lower variance than our
model predicts (Fig. 4A), researchers with higher produc-
tivity are more consistently highly productive as well.

Years with zero publications. Comparing the em-
pirical and simulated productivity distributions of the
full trajectories, we observe that years with zero publi-
cations are substantially more common in the empirical
data (15% vs 9%, Fig. 4B). Across empirical and simu-
lated trajectories, the proportion of careers with exactly
zero or one year of zero publications is similar, but em-
pirical trajectories tend to have more zeros per trajec-

tory than simulated ones (Fig. 4D). We note that the
prevalence of years of zeros cannot be explained due to
data quality issues within DBLP (see Supporting Infor-
mation), and hence this discrepancy suggests that the
dynamics that occur around a non-publishing state are
not currently captured in our random walk model.

IV. DISCUSSION

Scientific understanding about large-scale patterns in
faculty productivity has been overly focused average phe-
nomena, such as the canonical trajectory, rather than on
the dramatic variability of individuals. This focus has
drawn the field to incomplete theories of scientific pro-
ductivity, such as individual-level theories that posit an
increase and decline of individual capabilities (e.g., sci-
entific creativity and energy) over the course of a career,
that attempt to explain the canonical average without
accounting for the environmental determinants of pro-
ductivity [24, 32] or the broad diversity of real scientific
trajectories. This empirical diversity of real productivity
patterns poses a major challenge to all individual-level
theories of scientific productivity, because it requires a
successful theory to explain both the average pattern as
well as the large variations across and within individuals.

In this work, we discover two previously unknown sta-
tistical regularities: one in the distribution of early-career
productivity and one in the distribution of year-to-year
fluctuations in productivity (Fig. 1). We leverage these
regularities to create a parsimonious explanation of pro-
ductivity as a random walk where the variance in step
size itself changes in a specific way across career stages.
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The model recapitulates both the canonical trajectory in
average productivity and many empirical characteristics
of the diversity of individual trajectories. These results,
as well as the career statistics that the model does not
fully reproduce, constitute a new perspective of scientific
productivity and faculty careers rooted in randomness.

The key insight of this model—that a random walk
with high variance in the early career followed by de-
creased variance in the later career can produce the
canonical trajectory in aggregate while maintaining high
individual diversity—highlights a critical open question:
what drives this decrease in variance from the early to
the later career of a scientist? A sociological explana-
tion for the higher early career variance focuses on the
structure of faculty career incentives: acquiring research
grants, forming research groups, and publishing papers
constitutes a critical component of tenure evaluation, so
faculty are pressured in their early career to accelerate
their research output in a short timespan, in a way un-
like in the later career when the “start up” effects of an
early career are more distant [12]. However, the insti-
tutional pressures that drive productivity patterns may
differ outside of US and Canadian universities, and future
work can assess the generalizability of these explanations
to different global contexts.

For senior researchers, having an existing research
group makes it more difficult to expand as much in rela-
tive terms—e.g., to quadruple the number of active group
researchers from four to sixteen is much more challenging
than to grow from one to four. Established researchers
can also be more selective about grant applications to
avoid the logistical difficulties of managing a rapidly ex-
panding and contracting group. Additionally, in the later
career, faculty have access to many more career paths
than do early-career faculty, such as major university
service roles related to curricular design and university
administration, and scholarly service like editorships and
professional society leadership, while the requirements for
receiving tenure force all junior researchers into a nar-
rower set of paths [12].

The existence of research groups and career roles point
toward latent structure that is more complex than our
model. Random walks are Markovian, or “memory-
less”, in that this year’s productivity only depends on
the prior year’s productivity. In addition, faculty who
enter research inactive career roles can be expected to
exhibit more years with zero papers than what our sim-
ulation predicts, which is precisely what we find in the
data (Fig. 4D). By contrast, graduate student, postdoc-
toral, and research staff contracts are generally longer
than a year [24], meaning that a researcher’s group
size constitutes an unobserved latent variable that de-
creases the variance in faculty productivity. Both re-
search groups and research inactive career roles reduce
the variance in faculty productivity relative to a ran-
dom walk, and indeed we observe slightly lower vari-
ances within empirical careers than what our model pre-
dicts (Fig. 4A), and higher cumulative variances across

faculty (Fig. 4C). Even if individual productivity is more
correlated across time than a memoryless model predicts,
the discrepancy due to research inactive states is practi-
cally small relative to the remaining variance within ca-
reers (Fig. 4A). Nevertheless, future work could model
latent variables such as research group size and faculty
research roles directly using a hidden Markov Model to
potentially capture these non-Markovian aspects of pro-
ductivity trajectories [24].

The relationship between tenure evaluations (and fac-
ulty retention more broadly) and productivity is com-
plex, and may potentially filter the data that we ob-
serve, especially in the full trajectory data. Faculty leave
tenure-track positions for a variety of reasons, such as
workplace climate, work-life balance, and professional
reasons, and these reasons interact in complicated ways
with attrition [31]. Attrition can happen among highly
productive scholars who are pulled into industry posi-
tions, less productive scholars who fail to secure tenure,
or average scholars who leave for non-professional rea-
sons. For the results that we can compute using all of
the trajectories, the corresponding analyses using the full
trajectory data produce qualitatively similar outcomes,
suggesting that the role of attrition on the findings are
negligible.

The dynamical approach we construct here effectively
subsumes more specific mechanistic models, and poses a
further puzzle for researchers: why does faculty produc-
tivity follow such clear mathematical distributions (the
exponential distribution for early-career productivity and
the Laplace distribution for year-to-year changes in pro-
ductivity), and why does a simple random walk model
reproduce so many features of the empirical data, de-
spite ignoring the main heterogeneities in academic ca-
reers such as prestige [32, 33|, gender [19, 34, 35|, par-
enthood [22], race [36], socioeconomic status [37], and
subfield [38]7?

One answer is that those heterogeneities are a subset
of a panoply of contingent factors—tasks fundamental
to the production of science such as delays in funding,
student recruiting, peer review, coordination with col-
laborators including students, and regular variation due
to the nature of research itself (experiments, data col-
lection, computation, mistakes, dead ends, etc), not to
mention non-academic sources of randomness, such as
unexpected or variable life events—which are so numer-
ous and unpredictable that together they constitute the
bulk of the variation in productivity over time, giving rise
to the appearance of dominating randomness. Indeed,
the Laplace distribution can appear when heterogeneous
random walks are themselves aggregated together [39].

The close agreement between the empirical data on
changes in annual productivity and a Laplace distribu-
tion, which is symmetric, highlights a striking fact: the
probability that a scientist’s productivity increases next
year by some amount very nearly equals the probability
that it also decreases by the same amount in the follow-
ing year. An interesting direction of future work would



be to untangle the underlying factors and contingencies
that make the distribution so symmetric. Ultimately, any
symmetry between increases and decreases in productiv-
ity is imperfect, because scientists cannot produce fewer
than zero papers any given year. This “hard” bound-
ary plays a crucial role in explaining how an increase
in productivity variance becomes an increase in average
productivity. That is, when annual productivity is close
to zero, the zero boundary censors the distribution of
changes in productivity, and that censoring shifts the av-
erage displacement upward [40]. The higher the distribu-
tion’s variance, the greater the censoring effect, and the
larger the induced upward shift in the average change. In
this way, the zero boundary induces a coupling between
the variance in the distribution of changes to productiv-
ity with the average productivity itself.

The nuanced interplay between variance and produc-
tivity might illuminate unexplored pathways for shaping
policy initiatives. Accelerating the process of obtaining
extramural funding and hiring new team members could
expedite the channeling of resources to innovative ideas,
increasing the variance in downstream productivity. De-
creased variability in later career stages could also re-
sult from adaptive learning—through planning, budget-
ing, research strategies, and so on—to mitigate the bur-
dens associated with research fluctuations. If faculty had
fewer unpredictable elements to manage, they might be
able to devote that effort toward more research. In ad-
dition, researchers who become research inactive tend to
remain so. While our results do not differentiate between
researchers who choose to become research inactive and
those who do not, the possibility that some researchers
become stuck in inactivity simply through chance sug-
gests potential policy interventions for recovering poten-
tial research contributions from seasoned researchers. In
particular, grants or other mechanisms to assist faculty
in research inactive career roles to transition back to re-
search could prevent their subsequent contributions from
becoming permanently lost to science.

The quantitative study of scientific careers and fac-

ulty productivity has been approached by many scholars,
typically using techniques from a social science method-
ological toolkit such as descriptive data analysis and ob-
servational causal inference that aim to identify aver-
ages behind a veil of variability. Our results, based on
a mechanistic model that centers this variability, show
that changes in variance drive changes in the average,
and that incentives and other system-level factors con-
strain and shape the way the fluctuations at the local
level generate the aggregate trends. Our work suggests
a shift in perspective: that individual-level fluctuations
are an inherent part of research productivity, and that
the panoply of contingent factors are an inherent part
of the system to be understood rather than averaged
away. This shift toward randomness and variability, away
from deterministic laws, illuminates the broad diversity
that characterizes real productivity patterns, within and
across scientific careers.
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